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Spin glasses without time-reversal symmetry and the absence of a genuine structural glass
transition
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We study the three-spin model and the Ising spin glass in a field using the Migdal-Kadanoff approximation.
The flows of the couplings and fields indicate no phase transition, but they show even for the three-spin model
a slow crossover to the asymptotic high-temperature behavior for large values of the coupling. We have also
evaluated a quantity that is a measure of the degree of non-self-averaging, and we found that it can become
large for certain ranges of the parameters and the system sizes. For a spin glass in a field the maximum of
non-self-averaging follows a line for given system size that resembles the de Almeida–Thouless line. We
conclude that non-self-averaging found in Monte Carlo simulations cannot be taken as evidence for the
existence of a low-temperature phase with replica symmetry breaking. Models similar to the three-spin model
have been extensively discussed in order to provide a description of structural glasses. Their theory at mean-
field level resembles the mode-coupling theory of real glasses. At that level the approach via one-step replica
symmetry breaking predicts two transitions, the first transition being dynamic and the second thermodynamic.
Our results suggest that in real finite-dimensional glasses there will be no genuine transitions at all, but that
some features of mean-field theory could still provide some useful insights.

PACS number~s!: 05.20.2y, 75.10.Nr, 05.70.Jk
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I. INTRODUCTION

Despite over two decades of work, the controversy c
cerning the nature of the ordered phase of short-range I
spin glasses continues. Monte Carlo simulations of thr
and four-dimensional systems appear to be providing
dence for replica symmetry breaking~RSB! in these systems
~for recent reviews, see@1,2#!. However, recent develop
ments have cast doubt on this interpretation of the Mo
Carlo data. In a series of papers on the Ising spin glass wi
the Migdal-Kadanoff approximation~MKA !, we showed that
the equilibrium Monte Carlo data in three and four dime
sions that had been interpreted in the past as giving evide
for RSB can actually be interpreted quite easily within t
droplet picture, with apparent RSB effects being attributed
a crossover between critical behavior and the asympt
dropletlike behavior for small system sizes@3–7#. We also
showed that system sizes well beyond the reach of cur
simulations would probably be required in order to see dr
letlike behavior unambiguously. Very recently, a third vie
of the nature of the low-temperature phase of spin glas
has emerged. In this picture, there exist droplet excitati
on short scales, but on large scales there are system-
excitations that cost only a finite energy in the thermod
namic limit and have a surface whose fractal dimension
less than the space dimension@8–12#. It remains to be seen
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whether these excitations survive at larger system si
Within the MKA, fractal excitations are not possible, and t
signatures of these excitations found in Monte Carlo simu
tions are therefore not present in the MKA.

There is a close connection between the question of
nature of the spin-glass phase and that of the existence
phase transition in a spin glass in an external field. Me
field theory predicts a phase transition to a spin-glass ph
with RSB along the so-called de Almeida–Thouless lin
The droplet picture predicts no transition. The reason is t
in the presence of a field time-reversal symmetry is brok
and there is no symmetry left that could possibly be brok
by a phase transition, except for replica symmetry. Mo
Carlo simulations of a spin glass in a field@13–15# show
some evidence of a phase transition, and in particular
non-self-averaging; however, the situation is complicated
the presence of large finite-size effects due to crossover
nomena. For this reason, Parisiet al. @16# studied a different
system that also has broken time-reversal symmetry, bu
expected not to have strong crossover effects. This syste
the three-spin model, where the two-spin products in
Ising spin glass without field are replaced by three-spin pr
ucts. The numerical evidence for a phase transition in
four-dimensional system seems good, if a quantity that m
sures the degree of non-self-averaging is studied.

It is the purpose of this paper to study the two mention
systems without time-reversal symmetry in the MKA, in o
der to check whether a similar degree of non-self-averag
could be produced by finite-size effects. The flow of t
coupling constants shows that for both systems there ex
-
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PRE 62 7691SPIN GLASSES WITHOUT TIME-REVERSAL SYMMETRY . . .
only one attractive fixed point, which corresponds to a pa
magnet in a random field, and that there is consequently
phase transition within the MKA. Nevertheless, in both s
tems the coupling constants increase initially for sufficien
low temperatures, indicating that for small system sizes th
might be the appearance of a phase transition. Then
looked at the non-self-averaging parameter in both mod
within the MKA, for various system sizes and parame
values. We found a behavior similar to that reported for
Monte Carlo simulations, and apparent RSB for system s
similar to theirs. Furthermore, for the spin glass in a field,
maximum of the non-self-averaging parameter as function
the field ~for fixed system size! marks a line that can be
interpreted as a remnant of the de Almeida–Thouless lin

Some insights into what might be expected in the fini
dimensional three-spin model can be obtained from
mean-field solution of thep-spin model ~for a review of
which see@17#!. It has an analytical solution in the spheric
limit which can be obtained by a one-step replica-symme
breaking scheme. For our purposes the solution is best
derstood in terms of metastable states, which can be ide
fied with the solutions of Thouless-Anderson-Palmer~TAP!
like equations@18#. The partition function is obtained from
the integral

Z5E
f min

f max
d f exp@Ns~ f !2N fb#, ~1!

whereb51/kBT andN is the number of spins in the system
f is the free energy density of a TAP state. Solutions of
TAP equations exist forf min, f , f max, and the number of
solutions at free energy densityf is exponentially large and
given by exp@Ns(f)#, with s( f ) vanishing atf min and falling
discontinuously to zero atf max. For temperatures in the in
terval 0,T,TS the integral is dominated asN→` by the
lower limit of the integral, i.e., states whose free energyN f
differs from the state of lowest energy by only a fini
amount. For temperatures in the intervalTS,T,TD the in-
tegral can again be done by steepest descent and is d
nated by some value off lying in the interval f min, f
, f max. As the temperature approachesTD this value tends
to f max. In the temperature intervalTS,T,TD an exponen-
tially large number of states contribute to the thermodyna
ics in contrast to the situation belowTS where only a finite
number contribute. AboveTD , only the trivial paramagnetic
state contributes. There are thus two phase transition
mean-field level. The lower-temperature transition atTS is
accompanied by singularities in the free energy but at
higher-temperature transitionTD the free energy is smoot
and the presence of a transition is best inferred from sin
larities in the dynamics.

Now for a finite-dimensional system metastable sta
with f . f min are unstable.~Imagine in such a state conver
ing a block of spins of linear dimensionL to have the orien-
tations that they would have in the lowest state; the f
energy gain will be of orderLd; the energy cost of creatin
such a region will be no more than the cost of breaking
the bonds at the surface of the region,Ld21. Thus the possi-
bility of nucleating lower free energy states prevents the
istence of metastable states in finite-dimensional syste!
As the transition at the higher temperatureTD involves the
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metastable states only, one deduces that it will not exist
finite-dimensional system. The only transition that cou
possibly survive to finite dimensions is the one associa
with TS . Our studies, however, indicate that it too probab
does not occur in finite-dimensional systems.

Our study of the three-spin model had another, perh
physically more significant motivation. The three-spin mod
and its cousins have been extensively studied at mean-
level as models of structural glasses@19#. The higher-
temperature transitionTD has a purely dynamic signatur
~very similar to that in the mode-coupling approach to re
glasses@20#!, while the transition at the lower temperatureTS
is associated with the Kauzmann temperatureTK @21#, the
temperature at which the configurational entropy of the gl
goes to zero. It has been a common belief of many work
for several decades that there is no genuine transition atTK .
Recently this belief has been strongly reinforced by
Monte Carlo simulation of Santen and Krauth@22#, who
found no evidence of a genuine transition in a simulation
which the particles could be properly equilibrated. Our wo
strengthens the argument that no genuine transition an
gous toTS or TK will exist in finite dimensions. Neverthe
less, we can see echoes of the mean-field results in our
culations. It is our belief that future work should focus o
how the singularities in mean-field results are rounded of
finite dimensions.

This paper is organized as follows. First, we define
models and quantities studied in this paper. Then, we
scribe the MKA for the two models studied in this paper. W
use two different methods in order to make sure that
results do not depend on the particular implementation of
MKA. Next, we study the three-spin model and give o
results for the flow of the coupling constants and for t
non-self-averaging parameter. In Sec. V, we discuss the
glass in an external field. Again, we give results for the flo
and the degree of non-self-averaging. We also give sca
arguments based on the droplet picture that explain mos
our findings. Finally, we summarize and discuss our resu

II. MODELS AND DEFINITIONS

The Edwards-Anderson spin-glass HamiltonianH in the
presence of a uniform external magnetic fieldh is given by

2bH~s!5(
^ i , j &

Ji j s is j1h(
i

s i , ~2!

where the Ising spinss i can take the values61, and the
nearest-neighbor couplingsJi j are independent of each othe
and Gaussian distributed with a standard deviationJ. For
convenience, the Boltzmann factorb is absorbed into the
couplings and fields. Without a fieldh, the model has a low-
temperature phase with nonvanishing correlations^SiSj&
even for spins that are far apart. According to the drop
picture, this phase is unique~up to a global flip of all spins!,
and it is destroyed as soon as the field is turned on.
reason is that the field induces regions of a sufficiently la
radius to flip if the magnetization of this region opposes
field. The radiusr of these regions is obtained from the co
dition that the gain in magnetic energyhrd/2 becomes com-
parable to the loss in coupling energyJru, leading to
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r;~J/h!1/(d/22u). ~3!

Here, d is the dimension of the system, andu the scaling
dimension of domain walls. Beyond the radiusr, the long-
range correlations of the spin-glass phase are destroyed

In contrast, the RSB picture predicts the existence of
finitely many different phases of comparable free energy
the absence of a field. With increasing fieldh, the number of
phases decreases, and it becomes 1 at the de Alme
Thouless linehc(J). At the critical spin-glass transitionJc ,
the critical fieldhc vanishes, and it diverges to infinity as th
coupling strengthJ diverges~i.e., as the temperature goes
zero!.

The numerical analysis of the spin glass in a field is ha
pered by strong crossover effects. Crossover effects are
pected to be less strong in the three-spin model, becau
has no tunable parameter that can restore time-reversal
metry and lead to strong crossover effects when small@15#.
In the most easily tractable version of this model, each sit
occupied by two Ising spinss i

(1) and s i
(2) and the Hamil-

tonian is given by

2bH~s!5(
i j

~Ji j
(1)s i

(1)s i
(2)s j

(1)1Ji j
(2)s i

(1)s i
(2)s j

(2)

1Ji j
(3)s i

(1)s j
(1)s j

(2)1Ji j
(4)s i

(2)s j
(1)s j

(2)!, ~4!

where i j are nearest-neighbor pairs, and the couplingsJi j
(n)

are chosen independently from a Gaussian distribution w
zero mean and widthJ. When the signs of all spins are re
versed, the sign of the Hamiltonian changes also, indica
the violation of time-reversal symmetry.

If finite-dimensional systems have no RSB, this mod
has no phase transition since there is no symmetry that c
be broken. On the other hand, if RSB occurs in fini
dimensional spin glasses, the three-spin model could sho
phase transition at some critical coupling strengthJc .

It has proved useful to consider two identical copies~rep-
licas! of the system, with the spins$s i% and $t i%, and to
measure overlaps between them. This gives informa
about the structure of the low-temperature phase, in part
lar about the number of pure states. The main quantity s
ied in this paper is the parameterA, which measures the
degree of non-self-averaging, and is defined by

A5
@Š~q2^q&!2

‹

2#

@Š~q2^q&!2
‹#2

21, ~5!

where^•••& and @•••# denote the thermodynamic and di
order averages, respectively. The overlapq between the two
replicas is given by

q5
1

N (
i

s it i

for the Ising spin glass in a field, and by

q5
1

2N (
i

~s i
(1)t i

(1)1s i
(2)t i

(2)!
-
n

a–

-
x-
it

m-

is

th
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for the three-spin model.N is the number of sites in the
system.

A is most easily evaluated by introducing a coupling b
tween the two replicas, and by differentiating with respect
it. The Hamiltonian for the coupled system is then

2bHe~s,t!52bH~s!2bH~t!1eNq.

The mean overlap is given by the expression

^q&5F 1

N2

]

]e
ln ZG

e50

,

and its variance by

Š~q2^q&!2
‹5F 1

N

]2

]e2
ln ZG

e50

.

Z is the partition function.
In systems with RSB, the probability distributionP(q) of

q is broad, andA has a nonzero limit in the limit of infinite
system size. On the other hand, in the absence of RSB,
sample has only one, sample-independent value ofq, andA
vanishes in the thermodynamic limit. Consequently, anA
that increases with increasing system size could be take
an indicator of RSB. However, we will see in this paper th
even systems without RSB can show an increasingA over a
wide range of system sizes and parameters.

III. MIGDAL-KADANOFF APPROXIMATION

The Migdal-Kadanoff approximation is a real-spa
renormalization group that gives approximate recursion re
tions for the various coupling constants. An exact decim
tion, which consists in taking the trace over all those sp
that do not belong to the coarse-grained lattice, gener
higher-order couplings between spins of more that two si
and is therefore untractable. In order to circumvent this pr
lem, the MKA moves the bonds of a hypercubic lattice b
fore each decimation step in such a way that no higher-o
couplings can be generated. If the bond moving is symme
with respect to the different space directions, one ends
with the scheme represented in Fig. 1.

In a d-dimensional lattice, 2d21 bonds are superimpose
as a consequence of bond moving. In the absence of
terms ~i.e., of terms that couple only spins that are on t
same sitei, and are therefore not in a clear way associa
with bonds!, the 2d21 coupling constants of each of thed
bundles of bonds per coarse-grained unit cell simply add
and the ‘‘naked’’ spins that are left behind have no co
plings. Taking the trace over thed spins that are on thed

FIG. 1. The Migdal-Kadanoff bond-moving scheme for a cub
lattice.
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main bonds leads to coarse-grained coupling constants
tween neighboring spins on the coarse-grained lattice. T
ing the trace over the naked spins gives only a constant
tribution to the partition function, which can be neglecte
This decimation procedure is iteratedn times on a lattice of
linear sizeL52n, until a single unit cell is left over. Assum
ing periodic boundary conditions, one can then take the tr
over the final spin.

The flow of the coupling constants in this scheme res
from alternating the addition of 2d21 bonds with linking two
of these new bonds together and taking the trace over
middle spin. Essentially the same flow results when a d
mation is done on a hierarchical lattice that is construc
iteratively by replacing each bond by 2d bonds, as indicated
in Fig. 2. The total number of bonds aftern iterations is 2dn.
Spin decimation on such a lattice is done by taking the tr
over the spins that are highest on this hierarchy~i.e., that
were added last during the construction procedure!. At each
decimation step, first the trace is taken over the middle s
of two linked bonds, and then 2d21 bonds are added togethe
to form a new bond, until the lowest level is reached and
trace over the remaining two spins is calculated@23#. Apart
from the fact that the order of bond adding and decimatio
reversed, the recursion relations for the coupling consta
are obtained by the same procedure as for the bond-mo
algorithm.

This equivalence between a bond-moving procedure f
hypercubic lattice and a hierarchical lattice no longer ho
when field terms are present. In both of our models, th
field terms are either present from the beginning~Ising spin
glass in a field!, or they are initially absent, but are generat
during the decimation procedure~three-spin model!. For the
bond-moving procedure, one has to decide whether the fi
will also be moved~and to where!, or whether they will
remain at their sites, or whether part of them will be mov
This creates a certain freedom in the renormalizat
scheme, and the most plausible choice is determined by
requirement that the flows of the fields near the ze
temperature fixed point and at the infinite-temperature fi
point shall be those of the hypercubic lattice. However, if
main results of the MKA are to be generic, they should n
depend on the precise implementation of the bond-mov
algorithm. Otherwise one might doubt that the MKA reflec
the features of the real system. For this reason, we h
performed the MKA for a variety of different implementa
tions, and we found our main conclusions concerningA to be
independent of the implementation. In the following se
tions, we will give our results for the hierarchical lattice a
for a bond-moving scheme that has the correct flow of
field terms.

The treatment of a hierarchical lattice in the presence
field terms is straightforward. In order to understand that
flows of the fields are different on a hierarchical lattice co
pared to a hypercubic lattice, let us consider a situat

FIG. 2. Construction of a hierarchical lattice.
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where the flows of the couplings go to zero with increas
iteration number, which is the situation that we will encou
ter below for both models. As long as the couplings a
nonzero, each decimation step generates a contribution to
fields at the sites that are left over. The two corner sp
which are left over until the end, consequently rece
2n(d21) field contributions from the first decimation
2(n21)(d21) from the second iteration, and so on, until th
couplings are virtually zero. For twice the system size, i
for a lattice withn11 levels, the mean of the field contribu
tion to the corner spins due to decimations is larger b
factor 2(d21), and so is the variance of the field contributio
Even though the couplings go to zero after a certain num
of iterations, the fields keep growing.

In contrast, on a hypercubic lattice, the fields must rem
constant as soon as the couplings have become zero. Cle
this can be achieved only if field terms are not moved to
sites that will not be traced over. On the other hand, fi
terms must not be left with the ‘‘naked’’ spins. The reason
that, near the zero-temperature fixed point where the c
plings are very large, all fields must add up under renorm
ization. Fields must therefore always stay with spins that
coupled to other spins. For this reason, fields should
moved to thosed sites that are at the middle of the ma
bonds. Even with this restriction, there remains some fr
dom in choosing which field should be moved where. In o
simulations, we treated field terms as belonging to bon
The initial fields were evenly distributed between the ends
all bonds, and the fields generated during decimations n
rally ended up at the ends of bonds. When a bond w
moved, we moved all its field terms to that end that was to
traced over next.

For the Ising spin glass in a field, the recursion of fo
different parameters must be considered when studying
flow diagram and thermodynamic quantities. These are
two-spin coupling, the two fields on the two ends of a bon
and a constant. If one evaluates quantities related to the o
lap between two replicas, each site has two spins, leadin
16 parameters. The same number of parameters occur
the three-spin model, if only one replica is needed, as, e
for the flows and the phase diagram. For the evaluation oA,
we need two replicas, leading to 256 couplings. Luckily, t
decimation step can treat all 256 parameters with the s
formula, which involves a 2563256 matrix that is calculated
once at the beginning of the program.

IV. THREE-SPIN MODEL

This model was studied using Monte Carlo simulations
four dimensions in@15,23,16#, and evidence for RSB wa
found. The authors of@23,16# found in particular that the
non-self-averaging parameterA is small for large tempera
tures, and becomes large for smaller temperatures. Cu
for different system sizeL53,4,5,6 cross at nearly the sam
temperature, and below this temperatureA increases with
increasingL. Thus, the degree of non-self-averaging i
creases with the system size, just as can be expected
replica-symmetry-breaking transition. Monte Carlo simu
tions@15,24,16# are usually done with couplingsJ561. The
precise distribution of the couplings, however, should n
affect the universality class.
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Analytical results were obtained for thep-spin model in
mean-field theory, where one-step RSB was found. T
means that the ground state has a nonzero probabilit
being occupied below a critical temperatureTS ~see Sec. I!.
This mean-field scenario is fundamentally different from t
full RSB claimed to be seen in Monte Carlo simulations
the four-dimensional system. Thus, the argument usually
ployed for spin glasses that mean-field like behavior can
found in finite-dimensional short-range systems fails here

In the following, we show using the MKA that the as
sumption of the absence of crossover effects in this mod
incorrect, and thatA might at low temperatures and for sma
system sizes increase with increasing system size even i
system is self-averaging in the thermodynamic limit. W
mainly focus on the case of four dimensions, but report a
some results ind52 and 3. Let us first discuss the flow o
the coupling constants as the system is renormalized.
cause each bond is connected to four spins, the flow o
coupling constants has to be considered. In order to ob
this flow, we iterated the recursion relation on a set of 16

bonds. At each iteration, each of the new set of 106 bonds
was generated by randomly choosing 2d bonds from the old
set. For a hierarchical lattice, where the generated fields
main at that end of a bond at which they are generated,
first took the trace over the inner spins of each of the 2d21

pairs of bonds, and than we added the resulting bonds;
the bond-moving procedure described in the previous s
tion, we first generated two bunches of 2d21 bonds each,
then moved the fields of all but the ‘‘original’’ bond of eac
bunch to the inner spin, and took the trace over the in
spin. Figure 3 shows the flow of the width of the three-sp
couplings for different initial widths in four dimensions, fo
the two different algorithms.

One can see that for weak coupling~or, equivalently, high
temperature! the coupling strength decreases quickly w
increasing system size. However, for stronger coupling
lower temperatures, the coupling strength increases du

FIG. 3. Flow of the three-spin coupling strengthJ for bond
moving ~top! and the hierarchical lattice~bottom! for d54, divided
by the initial coupling strength. The curves correspond toJ(0)
50.065,0.13,0.18,0.26,0.5552,1,2,5~bond moving! and J(0)
50.13,0.26,0.35,0.52,1,2,5,10~hierarchical lattice! from bottom to
top.
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the first few iterations, and decreases afterward toward
fixed-point value zero, implying that there exists no low
temperature phase with long-range order. The maximum
reached between the third and fourth iterations, or betw
L58 andL516. For sufficiently strong coupling, the curve
reach an asymptotic shape. On the hierarchical lattice, wh
the fields grow without bounds, the three-spin couplings
crease to zero faster than with bond moving. Furthermo
the curves for the hierarchical lattice seem to corresp
roughly to those of the bond-moving procedure if the thre
spin couplings are divided by a number around 3. The rea
is that the first step during the bond-moving procedure su
marizes 8 bonds in one new bond. The width of the thr
spin coupling is therefore increased by a factor ofA8 in four
dimensions. In order to compare to the hierarchical lattice
to Monte Carlo simulations on a hypercubic lattice, o
should divide the coupling strength of the bond-moving p
cedure byA8.

If one considered only systems of sizes up to 8, one wo
get the illusion of a phase transition with (1/J)c around 3 or
4, a value that is not far from the one given forTc in @16#.
~Note that these authors kept the coupling strength fixed
61, and varied the temperature. TheirT corresponds there
fore to our 1/J.!

Figure 4 shows the flow of the widths of the differe
coupling constants for an initial width of the three-spin co
pling J52. One can see that the strengths of the field and
the on-site two-spin coupling~which can also be viewed as
‘‘field’’ ! increase rapidly and without limits for the hiera
chical lattice, and that they saturate at a finite value in
bond-moving case. The two-, three-, and four-spin couplin
increase during the first few iterations, and then decre
again. Thus, our three-spin model corresponds on la
scales to a system with only random fields and random c
plings between thes andt spins on the same site. There a
no couplings between spins on different sites on la
enough scales, but sites are independent of each other.

FIG. 4. Flow of the width of the field~long dashed!, of the
on-site two-spin coupling~dotted!, the two-spin coupling across
link ~dashed!, the three-spin coupling~solid!, and the four-spin cou-
pling ~dot-dashed! for bond moving~top! and on the hierarchica
lattice ~bottom! for d54, for an initial three-spin couplingJ(0)
52.
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on small scales could one get the impression that the sys
has long-range correlations. However, these system size
exactly the ones studied in@15,23,16#.

The crossover regime becomes larger with increasing
mension. Figure 5 shows the flow of the three-spin coupl
for an initial valueJ510 in d52,3,4 dimensions. Clearly
the strength of the increase and the range of system s
over which this increase occurs increases with increasing
mension. One can therefore expect that in even higher
mensions the apparent phase transition will become m
pronounced.

Next, let us study the non-self-averaging parameterA. As
explained in the previous section,A can be evaluated by
introducing a coupling between two identical replicas of t
system. Since there are now eight spins associated with
bond, the number of couplings that have to be evaluate
the MKA approximation is 285256. Figure 6 showsA as a

FIG. 5. Flow of the three-spin coupling for an initial valu
J(0)510 in d52,3,4 dimensions~from bottom to top!. The top
graph is for bond moving, the bottom graph for a hierarchical
tice.

FIG. 6. The non-self-averaging parameterA for L52,4,8,16
~from bottom to top!, andd54. The average is taken over 10 00
samples for the smallest system size and 200 samples for the
est. The top graph is again for bond moving and the bottom gr
on the hierarchical lattice.
m
are
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es
i-
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in

function of the coupling strength for different system siz
up to 16, in four dimensions. Larger system sizes could
be studied due to limitations in computer time. One can
that A increases with increasing system size wherever i
appreciably different from zero, and reaches large valu
This figure gives the impression that the system shows n
self-averaging. Of course, for larger system sizes,A must
eventually decrease again since we know from the flows
the couplings that there is self-averaging in the thermo
namic limit. In contrast to the Monte Carlo simulation resu
@23,16#, our curves forA do not intersect at a coupling
strength andA value of the order 1. This may be due to
qualitative difference between the MKA approximation a
Monte Carlo simulations, or to the much larger spacing oL
values imposed by the decimation procedure.

We have performed a similar simulation ind52 dimen-
sions and found thatA increases as the system size increa
over the rangeL52,4,8,16. However, forL532 and L
564, A decreases. If we assume that the system size
which A is largest increases with each dimension by a fac
2, as it does for the flow of the couplings, we can expect t
in d54 the system size for which a decrease inA can be
seen is beyondL564.

To summarize this section, we have shown that the thr
spin model, even in situations where we know that it se
averages in the thermodynamic limit, can show indicatio
of non-self-averaging at those system sizes typically stud
in simulations. Evidence for non-self-averaging found
Monte Carlo simulations must therefore be taken with c
tion as it might be misleading.

V. ISING SPIN GLASS IN A MAGNETIC FIELD

Monte Carlo simulations in four dimensions show som
indication of RSB@13–15#. Just as for the three-spin mod
and for the spin glass without external field, these findin
may again be due to finite-size effects and to the closenes
the critical temperature. Indeed, an investigation of
ground-state structure of a spin glass in a magnetic field@25#
shows no indication of RSB.~See, however, the discussio
in @26,27#.!

In order to test for finite-size effects, we studied the sp
glass in a field using the MKA, and determined the non-se
averaging parameterA as a function of the system param
eters. We found that the degree of non-self-averaging ca
large for the system sizes typically used in simulations,
particular when the contribution of the field to the free e
ergy is comparable to that of the couplings. While most pu
lished Monte Carlo simulations were done in four dime
sions, we chose to study the MKA in three dimensions,
order to be able to go to larger system sizes. Because t
are three parameters to be varied~the system size, the field
and the two-spin couplings!, many data points had to b
collected, and this is done faster in three dimensions.
course, we expect that the results of the MKA are similar
four dimensions, if the exponents for three dimensions
replaced with those for four dimensions. Just as for the thr
spin model, the apparent non-self-averaging should bec
even stronger in four dimensions.

First, let us study the flows of the couplings and field
The decimation procedure leads to the creation of rand
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fields, while the mean value of the field is not changed. F
ure 7 shows the flow of the two-spin couplingJ for various
initial values, and for a fixed fieldh50.1. For initial cou-
plings smaller than the critical coupling~1.13 for the hierar-
chical lattice and 0.55 for bond moving!, the coupling
strength decreases immediately. However, if the initial c
pling strength is sufficiently deep in the low-temperatu
phase, it increases first, until the random field has beco
strong enough to have a reducing effect on the coup
strength. Ultimately, the flow goes to a fixed point where
coupling strength is zero. On the hierarchical lattice,
width of the field keeps growing indefinitely, while it satu
rates in the bond-moving case, as discussed in Sec.
Clearly, there is no phase transition in the presence of
external field, but there are strong crossover effectsif the fi
is small.

As mentioned in Sec. II, the droplet picture predicts th
beyond a length scaler;(J/h)1/(d/22u) the contributions of
the field and of the couplings to the free energy beco
comparable, and we expect that the strength of the coupl
will decrease beyond this scale. In order to test this pre
tion, we have plotted in Fig. 8 the iteration number for whi
the two-spin coupling is largest versus the logarithm ofJ/h.
It should follow the law

log2L5
1

ln 2@~d/2!2u#
ln~J/h!1C.1.15 ln~J/h!1C,

with a suitable constantC. As the figure shows, the data fo
bond moving agree nicely with this prediction. For the hie
archical lattice, the slope is larger and has a value around
This might be due to the fact that the field increases faste
the hierarchical lattice, leading to an earlier reduction in
coupling strength than predicted by the scaling theory.

Next, let us discuss the quantityA, which is a measure o
the degree of non-self-averaging. Figure 9 shows our res
in the absence of a magnetic field. In the high-tempera
phase as well as in the spin-glass phaseA decreases with
increasing system size and approaches zero, just as

FIG. 7. Flow of the two-spin coupling strengthJ, divided by the
initial strength, for bond moving~top! and the hierarchical lattice
~bottom! for d53 and h50.1. The curves correspond toJ(0)
50.3,0.5,1,2,4,8 from bottom to top, for both graphs. The d
were obtained from a set of 50 000 bonds.
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would expect in the absence of RSB. At the critical coupli
strengthJc , A remains constant with increasing system si
its value beingA.0.13 for the hierarchical lattice andA
.0.15 for bond moving. The constancy ofA at the critical
point can be explained from the scaling behavior of the ov
lap distribution functionP(q). Critical scaling implies

@P~q!#5L2b/n@ P̃~qLb/n!#

and

@P~q!P~q8!#5L22b/n@ P̃~qLb/n!P̃~q8Lb/n!#,

with b being the order parameter critical exponent, andn the
correlation length exponent. Introducing the variabley
5qLb/n, we then obtain

a

FIG. 8. Iteration number for which the two-spin couplingJ
reaches its maximum, as a function of ln(J/h), for different values
of h. The symbols stand forh50.2 ~triangle!, h50.1 ~circle!, h
50.05 ~square!, andh50.02 ~diamond!. The lines have the slope
1.15 and offsetC50.5 ~bond moving, top graph!, and slope 1.4 and
offset C50.3 ~hierarchical lattice, bottom graph!.

FIG. 9. A as a function of 1/J for h50 andL54,8,16,32. The
top graph is for bond moving, the bottom graph on a hierarch
lattice.
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A5

E E y2y82P̃~y!P̃~y8!dydy8

S E y2P̃~y!dyD 2 21

independently ofL.
For low temperaturesT51/J, A seems to follow the law

A;TL2u with u.0.24. This can be derived by the follow
ing argument. At low temperatures, most samples hav
value of^q2& close to 1, and only a fractionp proportional to
kTL2u of all samples have system-wide excitations and h
therefore some other value^q2&5x,1. We therefore obtain

@^q2&#.12p1p@x#

and

@^q2&2#.12p1p@x2#,

leading to

A.p~11@x2#22@x# !;kTL2u.

In the presence of a magnetic field, we expectA to de-
crease to zero always for large system sizes, because
system is always in the high-temperature phase without lo
range correlations. However, as we will show in the follo
ing, A can nevertheless become very large for certain co
binations of the system size, the field, and the two-s
coupling strength. One can therefore easily get the imp
sion that the system is not self-averaging, while in realityA
increases over only a limited range of system sizes or par
eters.

Figure 10 shows our results forA with a magnetic field
h50.2. ForJ.Jc , the values are larger than without fiel
and they increase with increasing system size and decrea
temperature. We expect that as the system size increase
ther, A will reach a maximum and then decrease again.

FIG. 10. A as a function of 1/J for h50.2 andL52,4,8,16,32
~from bottom to top for the 1/J50.5 points!, averaged over 2000–
50 000 samples. The top graph is for bond moving, the bot
graph for a hierarchical lattice.
a
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fields stronger thanh50.5, we see this reversal in the tren
of A already for the system sizes studied in the simulatio
For J,Jc , Fig. 10 shows that the curves for differentL
intersect each other, such that for high temperatures s
averaging is better for larger system sizes. Thus, the beha
of A for weak fields seems to be qualitatively similar to th
of the three-spin model.

For given system size and coupling strengthJ.Jc , there
exists always a value ofh for which A has a maximum. This
maximum is higher for larger system sizes and for low
temperatures 1/J. Figure 11 shows the field for whichA is
largest as a function of 1/J. The data are in good agreeme
with a dependencehmax}J andhmax}L21.26 for bond mov-
ing. This means thatA is largest whenh;JL(d/22u). For the
hierarchical lattice, the fit to the data is best for a depende
hmax}J and hmax}L20.93. Just as in Fig. 8, the effective
value ofd/22u appears to be larger on the hierarchical l
tice than for bond moving. We suspect that this is due to
fact that the field grows indefinitely on the hierarchical la
tice.

These results can be understood if one considers the e
of the field on the overlap distributionP(q). Without field,
P(q) is a symmetric function, and varies considerably
shape for different samples for the system sizes typic
used in simulations. This feature is seen in Monte Ca
simulations@28# as well as in the MKA@3#. A magnetic field
changes the shape ofP(q) and moves the weight more an
more toward positiveq. In the limit h→`, all spins are
aligned with the field, leading toP(q)5d(1). Along the
boundary lineL;(J/h)1/(d/22u), where the field is not yet
strong enough to destroy all features of the low-tempera
phase, we can expect that at least some samples still
large droplets than can be flipped without much free ene
cost. In Monte Carlo simulations@14#, one finds indeed for
certain intermediate parameter values a@P(q)# that has a
pronounced peak at some largeq value, and a long and thin
tail that extends almost all the way down toq521. The
authors point out that this feature results from most samp

FIG. 11. The field valuehmax for which A is largest, forL
54,8,16,32~from top to bottom!. The straight lines are power law
hmax}JL21.26 ~top graph, bond moving! andhmax}JL20.93 ~bottom
graph, hierarchical lattice!.
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having only the main peak, and other samples having
additional second peak for some other value ofq. They go on
to argue that this is a non-self-averaging feature charact
tic of RSB, and that it would not be expected if there was
RSB. However, they also admit that their simulations do
show a second peak in@P(q)# at a valueqmin , which is
expected from mean-field theory. Although we have not
terminedP(q) in the presence of a magnetic field within th
MKA, we can conclude from the behavior ofA that P(q)
must have in the MKA exactly the same features that we
described for the Monte Carlo simulations. Indeed, it is e
to show thatA becomes large if most samples have aP(q)
with one narrow peak atq0, and some samples have tw
peaks. For those samples with one peak, we have a s
variance ofq,

xs[^q22q0
2&,

which is essentially sample independent. For those sam
with two peaks, we have a large variancex l which is differ-
ent for each sample. If the fraction of samples with tw
peaks isp, we obtain

A5
~12p!xs

21p@x l
2#

$~12p!xs1p@x l #%
2

21.
p@x l

2#

xs
212pxs@x l #1p2@x l #

2
,

where we have kept only the leading terms. As long asp is
not much smaller than@x l #/xs , A is of the order 1/p. Thus,
if xs is small andp is small but not too small,A is large. The
second condition is satisfied if the field is such that a sm
fraction of samples have a second peak inP(q); the first
condition is better satisfied for largerL or smallerT. This
explains why we observe the maximum ofA for those h
values where the contribution of the field to the free ene
is comparable to that of the couplings, and why the ma
mum of A is larger for larger systems and lower tempe
tures. Of course, for some even larger value ofL, we expect
P(q) to start having fewer sample-to-sample fluctuatio
because the samples should become self-averaging. The
argument will break down, andA should remain small. How-
ever, this range of system sizes seems to be beyond the r
of our simulations.

In conclusion, we have shown that there exists a w
range of parameters over which the degree of non-s
averaging appears large for system sizes typically use
computer simulations. We expect our results to be valid
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yond the MKA. As we have argued for systems without
field @3,7#, the apparent non-self-averaging must be attr
uted to the influence of the zero-field critical point. Th
influence reaches surprisingly far and creates a line in
h-J plane along which non-self-averaging is particula
large, and which is somewhat reminiscent of the
Almeida–Thouless line. We are here in agreement with H
and Fisher@29# who already argued almost 10 years ago t
Monte Carlo simulation data for a spin glass in a magne
field are strongly affected by the critical point.

VI. DISCUSSION

We have shown that for the three-spin model as well
for the spin glass in a magnetic field a large degree of n
self-averaging found in computer simulations does not r
resent unequivocal evidence for RSB, but can be cause
finite-size effects. It seems, however, that a study of the n
self-averaging parameterA using Monte Carlo simulations
might be able to discriminate between RSB and the dro
picture for three- and four-dimensional spin glasses. As
have shown,A has a maximum atTc in zero field, and de-
creases again with decreasing temperature in the MKA
there was a low-temperature phase with RSB, the lo
temperature value forA should probably be larger than th
critical value, andA should therefore increase with decrea
ing temperature. Also, for temperatures belowTc , we found
that A has its maximum not at zero field, but at some fin
field value. The degree of non-self-averaging decreases d
in the supposed low-temperature phase. We expect a sim
behavior from the Monte Carlo simulations. This would be
hint that non-self-averaging is strongest along the bound
between the field-dominated and coupling-dominated
gimes, and not in the region where one would expect a lo
temperature phase with RSB.
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