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We study the three-spin model and the Ising spin glass in a field using the Migdal-Kadanoff approximation.
The flows of the couplings and fields indicate no phase transition, but they show even for the three-spin model
a slow crossover to the asymptotic high-temperature behavior for large values of the coupling. We have also
evaluated a quantity that is a measure of the degree of non-self-averaging, and we found that it can become
large for certain ranges of the parameters and the system sizes. For a spin glass in a field the maximum of
non-self-averaging follows a line for given system size that resembles the de Almeida—Thouless line. We
conclude that non-self-averaging found in Monte Carlo simulations cannot be taken as evidence for the
existence of a low-temperature phase with replica symmetry breaking. Models similar to the three-spin model
have been extensively discussed in order to provide a description of structural glasses. Their theory at mean-
field level resembles the mode-coupling theory of real glasses. At that level the approach via one-step replica
symmetry breaking predicts two transitions, the first transition being dynamic and the second thermodynamic.
Our results suggest that in real finite-dimensional glasses there will be no genuine transitions at all, but that
some features of mean-field theory could still provide some useful insights.

PACS numbgs): 05.20-y, 75.10.Nr, 05.70.Jk

[. INTRODUCTION whether these excitations survive at larger system sizes.
Within the MKA, fractal excitations are not possible, and the
Despite over two decades of work, the controversy consignatures of these excitations found in Monte Carlo simula-
cerning the nature of the ordered phase of short-range Isingons are therefore not present in the MKA.
spin glasses continues. Monte Carlo simulations of three- There is a close connection between the question of the
and four-dimensional systems appear to be providing evinature of the spin-glass phase and that of the existence of a
dence for replica symmetry breakitBSB) in these systems phase transition in a spin glass in an external field. Mean-
(for recent reviews, se€l,2]). However, recent develop- field theory predicts a phase transition to a spin-glass phase
ments have cast doubt on this interpretation of the Montavith RSB along the so-called de Almeida—Thouless line.
Carlo data. In a series of papers on the Ising spin glass withithe droplet picture predicts no transition. The reason is that
the Migdal-Kadanoff approximatiofMKA ), we showed that in the presence of a field time-reversal symmetry is broken,
the equilibrium Monte Carlo data in three and four dimen-and there is no symmetry left that could possibly be broken
sions that had been interpreted in the past as giving evidend®y a phase transition, except for replica symmetry. Monte
for RSB can actually be interpreted quite easily within theCarlo simulations of a spin glass in a figlti3—15 show
droplet picture, with apparent RSB effects being attributed tsome evidence of a phase transition, and in particular of
a crossover between critical behavior and the asymptotiaon-self-averaging; however, the situation is complicated by
dropletlike behavior for small system sizg3-7]. We also  the presence of large finite-size effects due to crossover phe-
showed that system sizes well beyond the reach of curremtomena. For this reason, Parigial. [16] studied a different
simulations would probably be required in order to see dropsystem that also has broken time-reversal symmetry, but is
letlike behavior unambiguously. Very recently, a third view expected not to have strong crossover effects. This system is
of the nature of the low-temperature phase of spin glassee three-spin model, where the two-spin products in the
has emerged. In this picture, there exist droplet excitationssing spin glass without field are replaced by three-spin prod-
on short scales, but on large scales there are system-widgts. The numerical evidence for a phase transition in the
excitations that cost only a finite energy in the thermody-four-dimensional system seems good, if a quantity that mea-
namic limit and have a surface whose fractal dimension isures the degree of non-self-averaging is studied.
less than the space dimensi@+12. It remains to be seen It is the purpose of this paper to study the two mentioned
systems without time-reversal symmetry in the MKA, in or-
der to check whether a similar degree of non-self-averaging
*Present Address: Program in Neuroscience, University of Marycould be produced by finite-size effects. The flow of the
land, Baltimore MD 21201 coupling constants shows that for both systems there exists
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only one attractive fixed point, which corresponds to a parametastable states only, one deduces that it will not exist in a
magnet in a random field, and that there is consequently nfinite-dimensional system. The only transition that could
phase transition within the MKA. Nevertheless, in both sys-possibly survive to finite dimensions is the one associated
tems the coupling constants increase initially for sufficientlywith Tg. Our studies, however, indicate that it too probably
low temperatures, indicating that for small system sizes therdoes not occur in finite-dimensional systems.
might be the appearance of a phase transition. Then we Our study of the three-spin model had another, perhaps
looked at the non-self-averaging parameter in both modelphysically more significant motivation. The three-spin model
within the MKA, for various system sizes and parameterand its cousins have been extensively studied at mean-field
values. We found a behavior similar to that reported for thdevel as models of structural glass¢$9]. The higher-
Monte Carlo simulations, and apparent RSB for system sizetemperature transitiof, has a purely dynamic signature
similar to theirs. Furthermore, for the spin glass in a field, the(very similar to that in the mode-coupling approach to real
maximum of the non-self-averaging parameter as function ofjlasse$20]), while the transition at the lower temperatdrg
the field (for fixed system sizemarks a line that can be is associated with the Kauzmann temperatlige[21], the
interpreted as a remnant of the de Almeida—Thouless line.temperature at which the configurational entropy of the glass
Some insights into what might be expected in the finite-goes to zero. It has been a common belief of many workers
dimensional three-spin model can be obtained from thdor several decades that there is no genuine transitidiy at
mean-field solution of thg-spin model(for a review of Recently this belief has been strongly reinforced by the
which sed17]). It has an analytical solution in the spherical Monte Carlo simulation of Santen and Kraui®2], who
limit which can be obtained by a one-step replica-symmetryfound no evidence of a genuine transition in a simulation in
breaking scheme. For our purposes the solution is best unvhich the particles could be properly equilibrated. Our work
derstood in terms of metastable states, which can be identstrengthens the argument that no genuine transition analo-
fied with the solutions of Thouless-Anderson-PalrlBAP)  gous toTg or T¢ will exist in finite dimensions. Neverthe-
like equationg18]. The partition function is obtained from |ess, we can see echoes of the mean-field results in our cal-
the integral culations. It is our belief that future work should focus on
how the singularities in mean-field results are rounded off in
(1) finite dimensions.
This paper is organized as follows. First, we define the
models and quantities studied in this paper. Then, we de-
where=1/kgT andN is the number of spins in the system. scribe the MKA for the two models studied in this paper. We
f is the free energy density of a TAP state. Solutions of theuse two different methods in order to make sure that the
TAP equations exist fof ,;,<f<f.x, and the number of results do not depend on the particular implementation of the
solutions at free energy densityis exponentially large and MKA. Next, we study the three-spin model and give our
given by expNo(f)], with o(f) vanishing aff,;, and falling  results for the flow of the coupling constants and for the
discontinuously to zero &t,,,. For temperatures in the in- non-self-averaging parameter. In Sec. V, we discuss the spin
terval 0<T<Tg the integral is dominated d8—o by the  glass in an external field. Again, we give results for the flows
lower limit of the integral, i.e., states whose free enelgy ~ and the degree of non-self-averaging. We also give scaling
differs from the state of lowest energy by only a finite arguments based on the droplet picture that explain most of
amount. For temperatures in the interfa< T<Tp the in-  our findings. Finally, we summarize and discuss our results.
tegral can again be done by steepest descent and is domi-

Z=ffmaxdfex;{No(f)—NfB],

in

nated by some value of lying in the interval f;,<f Il. MODELS AND DEFINITIONS
<fax- As the temperature approaches this value tends ) _ )

tially large number of states contribute to the thermodynamPresence of a uniform external magnetic fielts given by

ics in contrast to the situation beloWg where only a finite

number cor_ltribute. Abové, only the trivial paramagn_etic — BH(0)= 2 Ji10i01+h2 o, )

state contributes. There are thus two phase transitions at ih i

mean-field level. The lower-temperature transitionTatis

accompanied by singularities in the free energy but at thevhere the Ising sping; can take the values 1, and the

higher-temperature transitioh, the free energy is smooth nearest-neighbor couplings; are independent of each other

and the presence of a transition is best inferred from singuand Gaussian distributed with a standard deviatiorFor

larities in the dynamics. convenience, the Boltzmann factgr is absorbed into the
Now for a finite-dimensional system metastable stategouplings and fields. Without a field the model has a low-

with f>f ., are unstable(lmagine in such a state convert- temperature phase with nonvanishing correlatigsS;)

ing a block of spins of linear dimensidnto have the orien- even for spins that are far apart. According to the droplet

tations that they would have in the lowest state; the freepicture, this phase is unigquep to a global flip of all spins

energy gain will be of ordet.%; the energy cost of creating and it is destroyed as soon as the field is turned on. The

such a region will be no more than the cost of breaking allreason is that the field induces regions of a sufficiently large

the bonds at the surface of the regiafd, 1. Thus the possi- radius to flip if the magnetization of this region opposes the

bility of nucleating lower free energy states prevents the exfield. The radiug of these regions is obtained from the con-

istence of metastable states in finite-dimensional sysjemsdition that the gain in magnetic enertry®’? becomes com-

As the transition at the higher temperatiiig involves the parable to the loss in coupling enerdy’, leading to
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r ~(J/h)@2=0), ©)

Here, d is the dimension of the system, amdthe scaling 1

dimension of domain walls. Beyond the radiuysthe long-

range correlations of the spin-glass phase are destroyed.
In contrast, the RSB picture predicts the existence of in-

finitely many different phases of comparable free energy in

the absence of a field. With increasing fiéidthe number of FIG. 1. The Migdal-Kadanoff bond-moving scheme for a cubic

phases decreases, and it becomes 1 at the de Almeidaattice.

Thouless lineh (J). At the critical spin-glass transitiod ,

the critical fieldh, vanishes, and it diverges to infinity as the for the three-spin modelN is the number of sites in the

coupling strengthl diverges(i.e., as the temperature goes to system.

zero. A is most easily evaluated by introducing a coupling be-
The numerical analysis of the spin glass in a field is hamiween the two replicas, and by differentiating with respect to

pered by strong crossover effects. Crossover effects are ek: The Hamiltonian for the coupled system is then

pected to be less strong in the three-spin model, because it

has no tunable parameter that can restore time-reversal sym- —BH(o,7)=—BH(o)— BH(7)+€eNQ.

metry and lead to strong crossover effects when spi&l.

In the most easily tractable version of this model, each site i

occupied by two Ising spins") and ¢{?) and the Hamil-

;’he mean overlap is given by the expression

S 1 9
tonian is given by (@=|— glnz ,
N e=0
- BH(0)=2 (IPoPePaV+ 3D oD D and its variance by
]
3) (1) (1) (2), 1(4) (2) (1) (2 2
+Ji(j ol )O'J( )(TJ( )+Ji(j ol )a']-( )G'J( ), (4) (g—(q)D)= E&—IHZ
N 5e =0

whereij are nearest-neighbor pairs, and the couplid; S
are chosen independently from a Gaussian distribution witlZ is the partition function.
zero mean and width. When the signs of all spins are re-  In systems with RSB, the probability distributiét{q) of
versed, the sign of the Hamiltonian changes also, indicating is broad, andA has a nonzero limit in the limit of infinite
the violation of time-reversal symmetry. system size. On the other hand, in the absence of RSB, each
If finite-dimensional systems have no RSB, this modelsample has only one, sample-independent valug ahd A
has no phase transition since there is no symmetry that coulgnishes in the thermodynamic limit. Consequently, Aan
be broken. On the other hand, if RSB occurs in finite-that increases with increasing system size could be taken as
dimensional spin glasses, the three-spin model could showan indicator of RSB. However, we will see in this paper that
phase transition at some critical coupling strength even systems without RSB can show an increagirayer a
It has proved useful to consider two identical cogiep-  wide range of system sizes and parameters.
licas) of the system, with the spingo;} and {7}, and to
measure overlaps between them. This gives information IIl. MIGDAL-KADANOFE APPROXIMATION
about the structure of the low-temperature phase, in particu- ) ) ) )
lar about the number of pure states. The main quantity stud- 1he Migdal-Kadanoff approximation is a real-space
ied in this paper is the parameté; which measures the renormalization group that gives approximate recursion rela-

degree of non-self-averaging, and is defined by tions for the various coupling constants. An exact decima-
tion, which consists in taking the trace over all those spins
[{(q—(a))?)?] that do not belong to the coarse-grained lattice, generates

=" 1, (5) higher-order couplings between spins of more that two sites,

[{(a—(a)*)]? and is therefore untractable. In order to circumvent this prob-

lem, the MKA moves the bonds of a hypercubic lattice be-
where(---) and[- - -] denote the thermodynamic and dis- fore each decimation step in such a way that no higher-order
order averages, respectively. The overtgipetween the two couplings can be generated. If the bond moving is symmetric
replicas is given by with respect to the different space directions, one ends up
with the scheme represented in Fig. 1.
In a d-dimensional lattice, 2 bonds are superimposed
Ei OiT; as a consequence of bond moving. In the absence of field
terms(i.e., of terms that couple only spins that are on the
same site, and are therefore not in a clear way associated
with bonds, the 2~ coupling constants of each of tte
bundles of bonds per coarse-grained unit cell simply add up,
q:i 2 (oM 7D 4 5(2),2) ar_1d the “n_aked” spins that are Ieft_ behind have no cou-
2N S b plings. Taking the trace over the spins that are on thd

q:

Z| -

for the Ising spin glass in a field, and by
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where the flows of the couplings go to zero with increasing
iteration number, which is the situation that we will encoun-
ter below for both models. As long as the couplings are
nonzero, each decimation step generates a contribution to the
fields at the sites that are left over. The two corner spins,
) ) ) ) which are left over until the end, consequently receive
FIG. 2. Construction of a hierarchical lattice. 2"d-1) field contributions from the first decimation,

. . . (n—1)(d-1) i i i
main bonds leads to coarse-grained coupling constants b&- from the second iteration, and so on, until the
tween neighboring spins on the coarse-grained lattice. TakeOUPIiNgs are virtually zero. For twice the system size, i.e.,
ing the trace over the naked spins gives only a constant coﬁgr a lattice withn+1 levels, the mean of the field contribu-

tribution to the partition function, which can be neglected.tion to Ejhi corner spins due to decimations is larger by a
This decimation procedure is iteratadimes on a lattice of ~factor 2971, and so is the variance of the field contribution.

linear sizeL = 2", until a single unit cell is left over. Assum- EVen though the couplings go to zero after a certain number

ing periodic boundary conditions, one can then take the trac@ iterations, the fields keep growing. _ _
over the final spin. In contrast, on a hypercubic lattice, the fields must remain

The flow of the coupling constants in this scheme result£OnStant as soon as the couplings have become zero. Clearly,
from alternating the addition of®2 ! bonds with linking two tr_ns can be gchleved only if field terms are not moved to.the
of these new bonds together and taking the trace over thalte€S that will not be traced over. On”the' other hand, field
middle spin. Essentially the same flow results when a decil€'MS must not be left with the “naked” spins. The reason is
mation is done on a hierarchical lattice that is constructedn@t: near the zero-temperature fixed point where the cou-
iteratively by replacing each bond by Bonds, as indicated Plings are very large, all fields must add up under renormal-
in Fig. 2. The total number of bonds afteiterations is 2". ization. Fields must therefore always stay with spins that are

Spin decimation on such a lattice is done by taking the trac§°UPIed to other spins. For this reason, fields should be
over the spins that are highest on this hierar¢hs., that moved to thosel sites that are at the middle of the main
were added last during the construction proce)juN;each bonds. Even with this restriction, there remains some free-

decimation step, first the trace is taken over the middle spifo™ In choosing which field should be moved where. In our

of two linked bonds, and therf2* bonds are added together simulations, we treated field terms as belonging to bonds.

to form a new bond, until the lowest level is reached and theThe initial fields were evenly distributed between the ends of

o P Il bonds, and the fields generated during decimations natu-
trace over the remaining two spins is calculafgd]. Apart a
from the fact that the order of bond adding and decimation i4@!ly ended up at the ends of bonds. When a bond was

reversed, the recursion relations for the coupling constantfioved. we moved allits field terms to that end that was to be

are obtained by the same procedure as for the bond-movi ced over next. . , :
algorithm. For the Ising spin glass in a field, the recursion of four

This equivalence between a bond-moving procedure forsﬁifferent parameters must be co.nsidere(.dlwhen studying the
hypercubic lattice and a hierarchical lattice no longer holdd ©W diagram and thermodynamic quantities. These are the

when field terms are present. In both of our models, thes®V0-SPin coupling, the two fields on the two ends of a bond,
field terms are either present from the beginnitging spin and a constant. If one evaluates q_uantltles relatgd to the_ over-
glass in a field or they are initially absent, but are generated'@P Petween two replicas, each site has two spins, leading to
during the decimation procedufthree-spin mode¢l For the 16 parameters. The same number Of parameters occurs for
bond-moving procedure, one has to decide whether the fiel € three-spin model, if only one replica is needed, as, e.9.,
will also be moved(and to wherg or whether they will or the flows and the phase diagram. For the evaluatiof, of

remain at their sites, or whether part of them will be moved.\V€ _neeq two replicas, leading to 256 couplings. _Luckily, the
This creates a certain freedom in the renormalizatiorf€cimation step can treat all 256 parameters with the same

scheme, and the most plausible choice is determined by tHe'Mula, which involves a 256256 matrix that is calculated
once at the beginning of the program.

requirement that the flows of the fields near the zero-

temperature fixed point and at the infinite-temperature fixed

point shall be those of the hypercubic lattice. However, if the IV. THREE-SPIN MODEL

main results of the MKA are to be generic, they should not

depend on the precise implementation of the bond-moving This model was studied using Monte Carlo simulations in

algorithm. Otherwise one might doubt that the MKA reflectsfour dimensions in15,23,16, and evidence for RSB was

the features of the real system. For this reason, we havieund. The authors of23,16 found in particular that the

performed the MKA for a variety of different implementa- non-self-averaging parametéris small for large tempera-

tions, and we found our main conclusions conceritg be  tures, and becomes large for smaller temperatures. Curves

independent of the implementation. In the following sec-for different system sizé =3,4,5,6 cross at nearly the same

tions, we will give our results for the hierarchical lattice andtemperature, and below this temperatéxencreases with

for a bond-moving scheme that has the correct flow of théncreasingL. Thus, the degree of non-self-averaging in-

field terms. creases with the system size, just as can be expected for a
The treatment of a hierarchical lattice in the presence ofeplica-symmetry-breaking transition. Monte Carlo simula-

field terms is straightforward. In order to understand that theéions[15,24,1 are usually done with couplingk=*=1. The

flows of the fields are different on a hierarchical lattice com-precise distribution of the couplings, however, should not

pared to a hypercubic lattice, let us consider a situatioraffect the universality class.
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0 2 4 6 8 iteration
iteration

FIG. 4. Flow of the width of the fieldlong dashej of the
on-site two-spin couplingdotted, the two-spin coupling across a
link (dashedg the three-spin couplinsolid), and the four-spin cou-
pling (dot-dashed for bond moving(top) and on the hierarchical
lattice (bottom) for d=4, for an initial three-spin coupling(0)
=2.

FIG. 3. Flow of the three-spin coupling strengihfor bond
moving (top) and the hierarchical latticgottom for d=4, divided
by the initial coupling strength. The curves correspondl]{6)
=0.065,0.13,0.18,0.26,0.5552,1,2,%0bond moving and J(0)
=0.13,0.26,0.35,0.52,1,2,5,1hierarchical lattice from bottom to
top.

Analytical results were obtained for thespin model in  the first few iterations, and decreases afterward toward its
mean-field theory, where one-step RSB was found. Thidixed-point value zero, implying that there exists no low-
means that the ground state has a nonzero probability deémperature phase with long-range order. The maximum is
being occupied below a critical temperattrg (see Sec.)l reached between the third and fourth iterations, or between
This mean-field scenario is fundamentally different from theL =8 andL = 16. For sufficiently strong coupling, the curves
full RSB claimed to be seen in Monte Carlo simulations ofreach an asymptotic shape. On the hierarchical lattice, where
the four-dimensional system. Thus, the argument usually enthe fields grow without bounds, the three-spin couplings de-
ployed for spin glasses that mean-field like behavior can bérease to zero faster than with bond moving. Furthermore,
found in finite-dimensional short-range systems fails here. the curves for the hierarchical lattice seem to correspond

In the following, we show using the MKA that the as- roughly to those of the bond-moving procedure if the three-
sumption of the absence of crossover effects in this model ispin couplings are divided by a number around 3. The reason
incorrect, and thaf might at low temperatures and for small is that the first step during the bond-moving procedure sum-
system sizes increase with increasing system size even if tfigarizes 8 bonds in one new bond. The width of the three-
system is self-averaging in the thermodynamic limit. Wespin coupling is therefore increased by a factor/8fin four
mainly focus on the case of four dimensions, but report als@limensions. In order to compare to the hierarchical lattice or
some results id=2 and 3. Let us first discuss the flow of to Monte Carlo simulations on a hypercubic lattice, one
the coupling constants as the system is renormalized. Beshould divide the coupling strength of the bond-moving pro-
cause each bond is connected to four spins, the flow of 16edure by/8.
coupling constants has to be considered. In order to obtain If one considered only systems of sizes up to 8, one would
this flow, we iterated the recursion relation on a set df 10 get the illusion of a phase transition with §J{ around 3 or
bonds. At each iteration, each of the new set of bonds 4, a value that is not far from the one given fB¢ in [16].
was generated by randomly choosing®nds from the old  (Note that these authors kept the coupling strength fixed at
set. For a hierarchical lattice, where the generated fields rex 1, and varied the temperature. Th&iccorresponds there-
main at that end of a bond at which they are generated, wtore to our 1J.)
first took the trace over the inner spins of each of tAe’2 Figure 4 shows the flow of the widths of the different
pairs of bonds, and than we added the resulting bonds; fazoupling constants for an initial width of the three-spin cou-
the bond-moving procedure described in the previous se@ling J=2. One can see that the strengths of the field and of
tion, we first generated two bunches ot 2 bonds each, the on-site two-spin couplingvhich can also be viewed as a
then moved the fields of all but the “original” bond of each “field” ) increase rapidly and without limits for the hierar-
bunch to the inner spin, and took the trace over the innechical lattice, and that they saturate at a finite value in the
spin. Figure 3 shows the flow of the width of the three-spinbond-moving case. The two-, three-, and four-spin couplings
couplings for different initial widths in four dimensions, for increase during the first few iterations, and then decrease
the two different algorithms. again. Thus, our three-spin model corresponds on large

One can see that for weak couplifay, equivalently, high  scales to a system with only random fields and random cou-
temperature the coupling strength decreases quickly with plings between the and 7 spins on the same site. There are
increasing system size. However, for stronger coupling ono couplings between spins on different sites on large
lower temperatures, the coupling strength increases duringnough scales, but sites are independent of each other. Only
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30 . function of the coupling strength for different system sizes
up to 16, in four dimensions. Larger system sizes could not

20 | 1 be studied due to limitations in computer time. One can see

5 that A increases with increasing system size wherever it is
10 i appreciably different from zero, and reaches large values.

This figure gives the impression that the system shows non-
self-averaging. Of course, for larger system siz@snust

0 ; ‘ eventually decrease again since we know from the flows of
the couplings that there is self-averaging in the thermody-
20 - 1 namic limit. In contrast to the Monte Carlo simulation results
- [23,16, our curves forA do not intersect at a coupling
10 1 strength andA value of the order 1. This may be due to a
qualitative difference between the MKA approximation and
0 ; . z . . Monte Carlo simulations, or to the much larger spacing. of

values imposed by the decimation procedure.

We have performed a similar simulation éh=2 dimen-
sions and found thah increases as the system size increases
over the rangeL=2,4,8,16. However, fol.=32 and L
=64, A decreases. If we assume that the system size for
which A is largest increases with each dimension by a factor
2, as it does for the flow of the couplings, we can expect that

. . in d=4 the system size for which a decreaseAirtan be
on small scales could one get the impression that the systeQyen is beyond. = 64

has long-range correlations. However, these system sizes aré 1, g, mmarize this section. we have shown that the three-

exzfll_(ﬁly the ones stud_led [;)15’23’16'| ith i . OI_spin model, even in situations where we know that it self-
€ Crossover regimeé becomes farger with increasing "averages in the thermodynamic limit, can show indications
mension. Figure 5 shows the flow of the three-spin couplin

. : . . %f non-self-averaging at those system sizes typically studied
for an initial valueJ=10 in d=2,3,4 dimensions. Clearly,_ in simulations. Egvidgence for ngn-self-averaé]/i%g fc)J/und in
. o . g _ ffonte Carlo simulations must therefore be taken with cau-
over WhICh this increase occurs increases Wlth increasing d.'ﬁon as it might be misleading.
mension. One can therefore expect that in even higher di-
mensions the apparent phase transition will become more
pronounced. V. ISING SPIN GLASS IN A MAGNETIC FIELD

Next, let us study the non-self-averaging paraméteis ) . _ ) )
explained in the previous sectiod, can be evaluated by ~ Monte Carlo simulations in four dimensions show some
introducing a coupling between two identical replicas of theindication of RSB[13—-15. Just as for the three-spin model
system. Since there are now eight spins associated with ea@fd for the spin glass without external field, these findings
bond, the number of couplings that have to be evaluated if"@y @gain be due to finite-size effects and to the closeness to

the MKA approximation is 8=256. Figure 6 show#é as a the critical temperature. Indeed, an investigation of the
ground-state structure of a spin glass in a magnetic fr8¢

shows no indication of RSB See, however, the discussion
in [26,27].)
L \ ] In order to test for finite-size effects, we studied the spin

iteration

FIG. 5. Flow of the three-spin coupling for an initial value
J(0)=10 in d=2,3,4 dimensiongfrom bottom to top. The top
graph is for bond moving, the bottom graph for a hierarchical lat-
tice.

glass in a field using the MKA, and determined the non-self-

averaging parametek as a function of the system param-

L ; T i eters. We found that the degree of non-self-averaging can be

T large for the system sizes typically used in simulations, in

, = } N particular when the contribution of the field to the free en-

L ] ergy is comparable to that of the couplings. While most pub-

] lished Monte Carlo simulations were done in four dimen-

] sions, we chose to study the MKA in three dimensions, in

] order to be able to go to larger system sizes. Because there

] are three parameters to be varigide system size, the field,

_ and the two-spin couplings many data points had to be

E— collected, and this is done faster in three dimensions. Of

course, we expect that the results of the MKA are similar in

four dimensions, if the exponents for three dimensions are
FIG. 6. The non-self-averaging parameterfor L=2,4,8,16 replaced with those for four dimensions. Just as for the three-

(from bottom to top, andd=4. The average is taken over 10000 SPin model, the apparent non-self-averaging should become

samples for the smallest system size and 200 samples for the lar§ven stronger in four dimensions.

est. The top graph is again for bond moving and the bottom graph First, let us study the flows of the couplings and fields.

on the hierarchical lattice. The decimation procedure leads to the creation of random

N WROOOO~=~NWHAOON
— T T
|
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FIG. 7. Flow of the two-spin coupling strengihdivided by the FIG. 8. Iteration number for which the two-spin couplidg

initial strength, for bond movingtop) and the hierarchical lattice reaches its maximum, as a function of ), for different values

(bottom for d=3 andh=0.1. Thecurves correspond td(0) of h. The symbols stand fon=0.2 (triangle, h=0.1 (circle), h

=0.3,0.5,1,2,4,8 from bottom to top, for both graphs. The data=0.05 (squarg, andh=0.02 (diamond. The lines have the slope

were obtained from a set of 50 000 bonds. 1.15 and offse€=0.5 (bond moving, top graphand slope 1.4 and
offset C=0.3 (hierarchical lattice, bottom graph

fields, while the mean value of the field is not changed. Fig-

ure 7 shows the flow of the two-spin coupliddor various  would expect in the absence of RSB. At the critical coupling

initial values, and for a fixed fielth=0.1. For initial cou- StrengthJ., A remains constant with increasing system size,

plings smaller than the critical couplir@.13 for the hierar- its value beingA=0.13 for the hierarchical lattice and

chical lattice and 0.55 for bond movipgthe coupling =0.15 for bond moving. The constancy Afat the critical

strength decreases immediately. However, if the initial couoint can be explained from the scaling behavior of the over-

pling strength is sufficiently deep in the low-temperaturelap distribution functionP(q). Critical scaling implies

phase, it increases first, until the random field has become

strong enough to have a reducing effect on the coupling [P(q)]=L"A"[P(qLF'")]

strength. Ultimately, the flow goes to a fixed point where the

coupling strength is zero. On the hierarchical lattice, theand

width of the field keeps growing indefinitely, while it satu-

rates in the bond-moving case, as discussed in Sec. Ill. [P(q)P(q’)]=L"2"[P(qLA")P(q'LP")],

Clearly, there is no phase transition in the presence of an

external field, but there are strong crossover effectsif the field;i, 3 being the order parameter critical exponent, artte

is small. _ _ _ correlation length exponent. Introducing the variable
As mentioned in Sec. I, the droplet picture predicts that:ql_ﬁ/y’ we then obtain

beyond a length scale~ (J/h)Y(@2~9 the contributions of

the field and of the couplings to the free energy become 0.2 ;
comparable, and we expect that the strength of the couplings
will decrease beyond this scale. In order to test this predic- 0.15
tion, we have plotted in Fig. 8 the iteration number for which
the two-spin coupling is largest versus the logarithnd . < 01
It should follow the law 0.05
0GyL = ———— In(3/h)+ C=1.15I3/h)+C 0
0%l = 1ot rdr) — gy MY/ + C=1.15II/h) + C, 0.2
with a suitable constar®. As the figure shows, the data for 0.15

bond moving agree nicely with this prediction. For the hier-
archical lattice, the slope is larger and has a value around 1.4.
This might be due to the fact that the field increases faster on 0.05 F
the hierarchical lattice, leading to an earlier reduction in the
coupling strength than predicted by the scaling theory.

Next, let us discuss the quantify which is a measure of
the degree of non-self-averaging. Figure 9 shows our results
in the absence of a magnetic field. In the high-temperature FIG. 9. A as a function of 17 for h=0 andL=4,8,16,32. The
phase as well as in the spin-glass phésdecreases with top graph is for bond moving, the bottom graph on a hierarchical
increasing system size and approaches zero, just as ofatice.
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FIG. 11. The field valuen,,,, for which A is largest, forL

FIG. 10. A as a function of 17 for h=0.2 andL=2,4,8,16,32 =4,8,16,32(from top to bottonm. The straight lines are power laws
(from bottom to top for the T/=0.5 point3, averaged over 2000— hmaxeJL ™% (top graph, bond movingandhy,a,eJL~ %% (bottom
50000 samples. The top graph is for bond moving, the bottonffaPh, hierarchical lattige
graph for a hierarchical lattice.

fields stronger thah=0.5, we see this reversal in the trend

o g of A already for the system sizes studied in the simulations.

j fy y'“P(y)P(y")dydy For J<J., Fig. 10 shows that the curves for different
A= 2 -1 intersect each other, such that for high temperatures self-
( f yzﬁ(Y)dY> averaging is better for larger system sizes. Thus, the behavior

of A for weak fields seems to be qualitatively similar to that
independently ot.. of the three-spin mod_el. .
For low temperature=1/J, A seems to follow the law O given system size and coupling strengthJ., there
A~TL~ with 6=0.24. This can be derived by the follow- EXiStS always a value dffor which A has a maximum. This
maximum is higher for larger system sizes and for lower
temperatures 1/ Figure 11 shows the field for whicA is
dargest as a function of 1/ The data are in good agreement
with a dependench,,<J andhy, <L~ 128 for bond mov-
ing. This means thah is largest wherm~JL(%2~9 For the
[{(g%)]=1—p+p[x] hierarchical lattice, the fit to the data is best for a dependence
hmaxJd and hy,,,cL %% Just as in Fig. 8, the effective
and value ofd/2— 6 appears to be larger on the hierarchical lat-
"2 ) tice than for bond moving. We suspect that this is due to the
[(a%)*]=1-p+p[x7], fact that the field grows indefinitely on the hierarchical lat-
tice.
These results can be understood if one considers the effect
A=p(1+[x2]—2[x])~kTL . of the field on the overlap distributioR(q). Without field,
P(q) is a symmetric function, and varies considerably in
In the presence of a magnetic field, we expAdio de- shape for different samples for the system sizes typically
crease to zero always for large system sizes, because thised in simulations. This feature is seen in Monte Carlo
system is always in the high-temperature phase without longsimulations 28] as well as in the MKA 3]. A magnetic field
range correlations. However, as we will show in the follow- changes the shape &f(q) and moves the weight more and
ing, A can nevertheless become very large for certain commore toward positiveg. In the limit h—oo, all spins are
binations of the system size, the field, and the two-spiraligned with the field, leading td&*(q)=&(1). Along the
coupling strength. One can therefore easily get the impressoundary lineL~ (J/h)Y(@2=9 "\where the field is not yet
sion that the system is not self-averaging, while in reality strong enough to destroy all features of the low-temperature
increases over only a limited range of system sizes or paranphase, we can expect that at least some samples still have
eters. large droplets than can be flipped without much free energy
Figure 10 shows our results féx with a magnetic field cost. In Monte Carlo simulationsl4], one finds indeed for
h=0.2. ForJ>J., the values are larger than without field, certain intermediate parameter value$R(q)] that has a
and they increase with increasing system size and decreasipgonounced peak at some largealue, and a long and thin
temperature. We expect that as the system size increases ftail that extends almost all the way down ¢g=—1. The
ther, A will reach a maximum and then decrease again. Foauthors point out that this feature results from most samples

ing argument. At low temperatures, most samples have
value of(g?) close to 1, and only a fractigmproportional to
kTL™? of all samples have system-wide excitations and hav
therefore some other valyg?)=x<1. We therefore obtain

leading to
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having only the main peak, and other samples having agond the MKA. As we have argued for systems without a
additional second peak for some other valug.ofhey go on field [3,7], the apparent non-self-averaging must be attrib-
to argue that this is a non-self-averaging feature characteristed to the influence of the zero-field critical point. This
tic of RSB, and that it would not be expected if there was noinfluence reaches surprisingly far and creates a line in the
RSB. However, they also admit that their simulations do noth-J plane along which non-self-averaging is particularly
show a second peak iP(q)] at a valueq,, which is large, and which is somewhat reminiscent of the de
expected from mean-field theory. Although we have not deAlmeida—Thouless line. We are here in agreement with Huse
terminedP(q) in the presence of a magnetic field within the and Fishef29] who already argued almost 10 years ago that
MKA, we can conclude from the behavior &f that P(q) Monte Carlo simulation data for a spin glass in a magnetic
must have in the MKA exactly the same features that we justield are strongly affected by the critical point.

described for the Monte Carlo simulations. Indeed, it is easy

to show thatA becomes large if most samples hav@ @) VI. DISCUSSION

with one narrow peak atj;, and some samples have two

peaks. For those samples with one peak, we have a small We have shown that for the three-spin model as well as
variance ofg, for the spin glass in a magnetic field a large degree of non-

self-averaging found in computer simulations does not rep-

XSE(qz—qS% resent unequivocal evidence for RSB, but can be caused by

o . ) finite-size effects. It seems, however, that a study of the non-
which is essentially sample independent. For those samplegt-averaging parametek using Monte Carlo simulations

with two peaks, we have a large variangewhich is differ-  yignt pe able to discriminate between RSB and the droplet

ent for each sample. If the fraction of samples with twopjictyre for three- and four-dimensional spin glasses. As we

peaks isp, we obtain have shownA has a maximum af . in zero field, and de-
2 2 5 creases again with decreasing temperature in the MKA. If
A (A-pxst+plxil PLx/] there was a low-temperature phase with RSB, the low-
{(1-p)xs+p[xi1}? X§+ 2pxdxl+ p2[X|]2’ temperature value foA should probably be larger than the

critical value, andA should therefore increase with decreas-

where we have kept only the leading terms. As long@s  ing temperature. Also, for temperatures beldy we found
not much smaller thapy,1/xs, A is of the order 18. Thus, thatA has its maximum not at zero field, but at some finite
if xsis small ando is small but not too smallA is large. The field value. The degree of non-self-averaging decreases deep
second condition is satisfied if the field is such that a smalln the supposed low-temperature phase. We expect a similar
fraction of samples have a second peakPifg); the first  behavior from the Monte Carlo simulations. This would be a
condition is better satisfied for largér or smallerT. This  hint that non-self-averaging is strongest along the boundary
explains why we observe the maximum Affor thoseh between the field-dominated and coupling-dominated re-
values where the contribution of the field to the free energygimes, and not in the region where one would expect a low-
is comparable to that of the couplings, and why the maxitemperature phase with RSB.
mum of A is larger for larger systems and lower tempera-
tures. Of course, fpr some even larger value pive expe(_:t ACKNOWLEDGMENTS
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